Virtually fibered Montesinos links

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtually fibered Montesinos links

We prove that all generalized Montesinos links in S which are not classic S̃L2 -type are virtually fibred except the trivial link of two components. We also prove the virtually fibred property for a family of infinitely many classic Montesinos links of type S̃L2 . As a byproduct we find the first family of infinitely many virtually fibred hyperbolic rational homology 3-spheres.

متن کامل

Virtually fibred Montesinos Links

William Thurston conjectured over twenty years ago that every compact hyperbolic 3manifold whose boundary is a possibly empty union of tori is finitely covered by a manifold which fibres over the circle. If true, it provides a significant amount of global information about the topology of such manifolds. The first non-trivial examples supporting the conjecture were obtained by Gabai [Ga1] (1986...

متن کامل

Virtually fibred Montesinos links of type S̃L2

We find a larger class of virtually fibred classic Montesinos links of type S̃L2, extending a result of Agol, Boyer and Zhang.

متن کامل

4 Great circle links and virtually fibered knots

We show that all two-bridge knot and link complements are virtually fibered. We also show that spherical Montesinos knot and link complements are virtually fibered. This is accomplished by showing that such knot complements are finitely covered by great circle link complements.

متن کامل

Seifert fibered surgery on Montesinos knots

Exceptional Dehn surgeries on arborescent knots have been classified except for Seifert fibered surgeries on Montesinos knots of length 3. There are infinitely many of them as it is known that 4n + 6 and 4n + 7 surgeries on a (−2, 3, 2n + 1) pretzel knot are Seifert fibered. It will be shown that there are only finitely many others. A list of 20 surgeries will be given and proved to be Seifert ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2008

ISSN: 1753-8416

DOI: 10.1112/jtopol/jtn030